Research Article
PDF EndNote BibTex RIS Cite

BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ)

Year 2020, Volume 59, Issue 3, 157 - 168, 01.09.2020
https://doi.org/10.30797/madencilik.792389

Abstract

Son yıllarda hızlı bir gelişim gösteren ulaşım ağı projeleri kapsamında inşa edilen tünellerin en çok karşılaşılan sorunlarından biri portal şevlerinin duraylılığıdır. Portal şevlerinde meydana gelen yenilmeler zaman zaman tünelde de duraylılık problemlerine sebep olmakta ve sorunu büyütmektedir. Bu çalışma kapsamında, buna tipik bir örnek olan Ankara-Sivas Yüksek Hızlı Tren projesi kapsamında inşa edilen T3 Tünelinde meydana gelen yenilme incelenmektedir. Tünel kazısı devam ederken, çıkış portal kesimi şevlerinde çatlaklar meydana gelmiş ve aynı zaman da tünel gövdesinde de göçük meydana gelmiştir. Bu çalışma kapsamında hem göçen kesimin güvenle tekrar kazılması için sayısal analizler ile önerilen yeni destek sistemleri değerlendirilmekte, hem de portal kesiminde şev duraylılığının sağlanması için gerekli analizlerin yapılması ve sonuçların performansı tartışılmaktadır. Buna ek olarak, çalışmada genel olarak tünel portal kazısı ile tünel içi tahkimat sistemlerinin etkileşimi tanımlanarak, bu tür tünel çalışmaları için bir prosedür önerilmektedir.

References

  • Akgün, H., Muratlı, SW., Koçkar, M.K., 2014. Geotechnical Investigations and Preliminary Support Design for the Geçilmez Tunnel: A Case Study Along the Black Sea Coastal Highway, Giresun, Northern Turkey. Tunnelling and Underground Space Technology, 40, 277 – 299.
  • Aygar, E.B and Gokceoglu, C., 2020. Problems Encountered During a Railway Tunnel Excavation in Squeezing and Swelling Materials and Possible Engineering Measures: A Case Study from Turkey. Sustainability, 12, 1166.
  • Ayoublou, F., Taromi, M., Eftekhari, A., 2019. Tunnel Portal Instability in Landslide Area and Remedial Solution: A Case Study. Acta Polytechnica, 59(5), 435– 447.
  • Fugro Sial Yerbilimleri, 2015. Ankara-Sivas Hızlı Tren Demiryolu Projesi Yerköy-Yozgat-Sivas Arası, T3 Tüneli (Km: 293+375 - 293+400) Arasında Meydana Gelen Göçük Değerlendirme Raporu.
  • Geniş, M., 2010. Assessment of the Dynamic Stability of the Portals of the Dorukhan Tunnel Using Numerical Analysis. International Journal of Rock Mechanics & Mining Sciences, 47, 1231–1241.
  • Kaya, A., Akgün, A., Karaman, K., Bulut, F., 2016. Understanding the Mechanism of Slope Failure on a Nearby Highway Tunnel Route by Different Slope Stability Analysis Methods: A Case From NE Turkey. Bull Eng Geol Environ, 75, 945–958.
  • Kaya, A., Karaman, K., Bulut, F., 2017. Geotechnical Investigations and Remediation Design for Failure of Tunnel Portal Section: A Case Study in Northern Turkey. Journal of Mountain Sciences, 14 (6), 1140 – 1160.
  • Khan, R.M.A., Mad, Z., Jo, B., 2019. Tunnel Portal Construction Using Sequential Excavation Method: A Case Study. Acta Polytechnica, 59(5), 435–447.
  • Koçkar, M.K., Akgün, H., 2003. Methodology for Tunnel and Portal Support Design in Mixed Limestone, Schist and Phyllite Conditions: A Case Study in Turkey. International Journal of Rock Mechanics & Mining Sciences, 40, 173 – 196.
  • Komu, M.P., Guney, U., Kilickaya, T.E., Gokceoglu, C., 2020. Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey). Geotech Geol Eng, 38, 1237–1254.
  • Hammah, R.E., Yacoub, T.E., and Corkum, B.C., 2005. The Shear Strength Reduction Method for the Generalized Hoek-Brown Criterion. ARMA/USRMS, American Rock Mechanics Association, 05-810.
  • Li, T., 2012. Damage to Mountain Tunnels Related to the Wenchuan Earthquake and Some Suggestions for Aseismic Tunnel Construction. Bull Eng Geol Environ, 71, 297–308.
  • Moussaei, N., Sharifzadeh, M., Sahriar, K., Khosravi, M.H., 2019. A New Classification of Failure Mechanisms at Tunnels in Stratified Rock Masses Through Physical and Numerical Modelling. Tunnelling and Underground Space Technology, 91, 103017.
  • Rabcewicz, L.v., 1964a. The New Austrian Tunnelling Method, Part One. Water Power, pp. 453–457. Rabcewicz, L.v.,1964b. The New Austrian Tunnelling Method, Part Two. Water Power, pp. 511–515.
  • Rabcewicz, L.v., 1965. The New Austrian Tunnelling Method, Part Three. Water Power, pp. 19–24.
  • Rao, K., Singh, T., 2017. Two-Dimensional Finite Element Based Parametric Analysis of South Portal Slope, Rohtang Tunnel, India. Procedia Engineering, 173, 1330 – 1333.
  • RocScience, 2020. Phase2 8.0 Excavation & Support Design. https://rocscience.com/documents/pdfs/up loads/8706.pdf.
  • Roy, N., Sarkar, R., 2017. A Review of Seismic Damage of Mountain Tunnels and Probable Failure Mechanisms. Geotech Geol Eng, 35, 1–28.
  • Sönmez, H., Ulusay, R., Gokceoglu, C., 1998. A Practical Procedure for the Back Analysis of Slope Failures in Closely Jointed Rock Masses. International Journal of Rock Mechanics & Mining Sciences, 35 (2), 219 – 233.
  • Taromi M., Eftekhari A., Hamidi J. K., Eghbali A., 2018. Tunnel Designing and Construction Process in Difficult Ground Conditions Using Controlled Deformations (ADECO) Approach: A Case Study. International Journal of Mining and Geo-Engineering, IJMGE 52-2, 149–160.
  • Tuncay, E., 2018. Assessments on Slope Instabilities Triggered by Engineering Excavations Near a Small Settlement (Turkey). Journal of Mountain Sciences, 15 (1), 114-129.
  • Yang, X.L., Huang, F., 2011. Collapse Mechanism of Shallow Tunnel Based on Nonlinear Hoek–Brown Failure Criterion. Tunnelling and Underground Space Technology, 26, 686 – 691.
  • Zhang, Z., Li, H., Yang, H., Wang, B., 2019. Failure Modes and Face Instability of Shallow Tunnels Under Soft Grounds. International Journal of Damage Mechanics, 28 (4), 566–589.
  • Zou, J., Chen, G., Qian, Z., 2019. Tunnel Face Stability in Cohesion-Frictional Soils Considering the Soil Arching Effect by Improved Failure Models. Computers and Geotechnics, 106, 1-17.

Year 2020, Volume 59, Issue 3, 157 - 168, 01.09.2020
https://doi.org/10.30797/madencilik.792389

Abstract

References

  • Akgün, H., Muratlı, SW., Koçkar, M.K., 2014. Geotechnical Investigations and Preliminary Support Design for the Geçilmez Tunnel: A Case Study Along the Black Sea Coastal Highway, Giresun, Northern Turkey. Tunnelling and Underground Space Technology, 40, 277 – 299.
  • Aygar, E.B and Gokceoglu, C., 2020. Problems Encountered During a Railway Tunnel Excavation in Squeezing and Swelling Materials and Possible Engineering Measures: A Case Study from Turkey. Sustainability, 12, 1166.
  • Ayoublou, F., Taromi, M., Eftekhari, A., 2019. Tunnel Portal Instability in Landslide Area and Remedial Solution: A Case Study. Acta Polytechnica, 59(5), 435– 447.
  • Fugro Sial Yerbilimleri, 2015. Ankara-Sivas Hızlı Tren Demiryolu Projesi Yerköy-Yozgat-Sivas Arası, T3 Tüneli (Km: 293+375 - 293+400) Arasında Meydana Gelen Göçük Değerlendirme Raporu.
  • Geniş, M., 2010. Assessment of the Dynamic Stability of the Portals of the Dorukhan Tunnel Using Numerical Analysis. International Journal of Rock Mechanics & Mining Sciences, 47, 1231–1241.
  • Kaya, A., Akgün, A., Karaman, K., Bulut, F., 2016. Understanding the Mechanism of Slope Failure on a Nearby Highway Tunnel Route by Different Slope Stability Analysis Methods: A Case From NE Turkey. Bull Eng Geol Environ, 75, 945–958.
  • Kaya, A., Karaman, K., Bulut, F., 2017. Geotechnical Investigations and Remediation Design for Failure of Tunnel Portal Section: A Case Study in Northern Turkey. Journal of Mountain Sciences, 14 (6), 1140 – 1160.
  • Khan, R.M.A., Mad, Z., Jo, B., 2019. Tunnel Portal Construction Using Sequential Excavation Method: A Case Study. Acta Polytechnica, 59(5), 435–447.
  • Koçkar, M.K., Akgün, H., 2003. Methodology for Tunnel and Portal Support Design in Mixed Limestone, Schist and Phyllite Conditions: A Case Study in Turkey. International Journal of Rock Mechanics & Mining Sciences, 40, 173 – 196.
  • Komu, M.P., Guney, U., Kilickaya, T.E., Gokceoglu, C., 2020. Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey). Geotech Geol Eng, 38, 1237–1254.
  • Hammah, R.E., Yacoub, T.E., and Corkum, B.C., 2005. The Shear Strength Reduction Method for the Generalized Hoek-Brown Criterion. ARMA/USRMS, American Rock Mechanics Association, 05-810.
  • Li, T., 2012. Damage to Mountain Tunnels Related to the Wenchuan Earthquake and Some Suggestions for Aseismic Tunnel Construction. Bull Eng Geol Environ, 71, 297–308.
  • Moussaei, N., Sharifzadeh, M., Sahriar, K., Khosravi, M.H., 2019. A New Classification of Failure Mechanisms at Tunnels in Stratified Rock Masses Through Physical and Numerical Modelling. Tunnelling and Underground Space Technology, 91, 103017.
  • Rabcewicz, L.v., 1964a. The New Austrian Tunnelling Method, Part One. Water Power, pp. 453–457. Rabcewicz, L.v.,1964b. The New Austrian Tunnelling Method, Part Two. Water Power, pp. 511–515.
  • Rabcewicz, L.v., 1965. The New Austrian Tunnelling Method, Part Three. Water Power, pp. 19–24.
  • Rao, K., Singh, T., 2017. Two-Dimensional Finite Element Based Parametric Analysis of South Portal Slope, Rohtang Tunnel, India. Procedia Engineering, 173, 1330 – 1333.
  • RocScience, 2020. Phase2 8.0 Excavation & Support Design. https://rocscience.com/documents/pdfs/up loads/8706.pdf.
  • Roy, N., Sarkar, R., 2017. A Review of Seismic Damage of Mountain Tunnels and Probable Failure Mechanisms. Geotech Geol Eng, 35, 1–28.
  • Sönmez, H., Ulusay, R., Gokceoglu, C., 1998. A Practical Procedure for the Back Analysis of Slope Failures in Closely Jointed Rock Masses. International Journal of Rock Mechanics & Mining Sciences, 35 (2), 219 – 233.
  • Taromi M., Eftekhari A., Hamidi J. K., Eghbali A., 2018. Tunnel Designing and Construction Process in Difficult Ground Conditions Using Controlled Deformations (ADECO) Approach: A Case Study. International Journal of Mining and Geo-Engineering, IJMGE 52-2, 149–160.
  • Tuncay, E., 2018. Assessments on Slope Instabilities Triggered by Engineering Excavations Near a Small Settlement (Turkey). Journal of Mountain Sciences, 15 (1), 114-129.
  • Yang, X.L., Huang, F., 2011. Collapse Mechanism of Shallow Tunnel Based on Nonlinear Hoek–Brown Failure Criterion. Tunnelling and Underground Space Technology, 26, 686 – 691.
  • Zhang, Z., Li, H., Yang, H., Wang, B., 2019. Failure Modes and Face Instability of Shallow Tunnels Under Soft Grounds. International Journal of Damage Mechanics, 28 (4), 566–589.
  • Zou, J., Chen, G., Qian, Z., 2019. Tunnel Face Stability in Cohesion-Frictional Soils Considering the Soil Arching Effect by Improved Failure Models. Computers and Geotechnics, 106, 1-17.

Details

Primary Language Turkish
Subjects Geosciences, Multidisciplinary
Journal Section Research Article
Authors

Ebu Bekir AYGAR This is me
Fugro Sial Yerbilimleri Müşavirlik ve Mühendislik Ltd Şti
0000-0002-5738-4602
Türkiye


Candan GÖKÇEOĞLU This is me (Primary Author)
HACETTEPE ÜNİVERSİTESİ
0000-0003-4762-9933
Türkiye

Publication Date September 1, 2020
Submission Date April 14, 2020
Acceptance Date
Published in Issue Year 2020, Volume 59Issue 3

Cite

Bibtex @research article { madencilik792389, journal = {Scientific Mining Journal}, issn = {2564-7024}, eissn = {2587-2613}, address = {Selanik Cad. No: 19/4 06650 Kızılay-Çankaya / ANKARA - TURKEY}, publisher = {Chamber of Mining Engineers of Turkey}, year = {2020}, volume = {59}, number = {3}, pages = {157 - 168}, doi = {10.30797/madencilik.792389}, title = {BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ)}, key = {cite}, author = {Aygar, Ebu Bekir and Gökçeoğlu, Candan} }
APA Aygar, E. B. & Gökçeoğlu, C. (2020). BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ) . Scientific Mining Journal , 59 (3) , 157-168 . DOI: 10.30797/madencilik.792389
MLA Aygar, E. B. , Gökçeoğlu, C. "BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ)" . Scientific Mining Journal 59 (2020 ): 157-168 <http://www.mining.org.tr/en/pub/issue/56728/792389>
Chicago Aygar, E. B. , Gökçeoğlu, C. "BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ)". Scientific Mining Journal 59 (2020 ): 157-168
RIS TY - JOUR T1 - BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ) AU - Ebu BekirAygar, CandanGökçeoğlu Y1 - 2020 PY - 2020 N1 - doi: 10.30797/madencilik.792389 DO - 10.30797/madencilik.792389 T2 - Scientific Mining Journal JF - Journal JO - JOR SP - 157 EP - 168 VL - 59 IS - 3 SN - 2564-7024-2587-2613 M3 - doi: 10.30797/madencilik.792389 UR - https://doi.org/10.30797/madencilik.792389 Y2 - 2023 ER -
EndNote %0 Scientific Mining Journal BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ) %A Ebu Bekir Aygar , Candan Gökçeoğlu %T BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ) %D 2020 %J Scientific Mining Journal %P 2564-7024-2587-2613 %V 59 %N 3 %R doi: 10.30797/madencilik.792389 %U 10.30797/madencilik.792389
ISNAD Aygar, Ebu Bekir , Gökçeoğlu, Candan . "BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ)". Scientific Mining Journal 59 / 3 (September 2020): 157-168 . https://doi.org/10.30797/madencilik.792389
AMA Aygar E. B. , Gökçeoğlu C. BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ). Mining. 2020; 59(3): 157-168.
Vancouver Aygar E. B. , Gökçeoğlu C. BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ). Scientific Mining Journal. 2020; 59(3): 157-168.
IEEE E. B. Aygar and C. Gökçeoğlu , "BİR TÜNELDE PORTAL VE TÜNEL STABİLİTESİ İLİŞKİSİ (ANKARA-SİVAS YÜKSEK HIZLI DEMİRYOLU PROJESİ, T3 TÜNELİ)", Scientific Mining Journal, vol. 59, no. 3, pp. 157-168, Sep. 2020, doi:10.30797/madencilik.792389

22562 22561 22560 22590 22558