Research Article
PDF EndNote BibTex RIS Cite

Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması

Year 2021, Volume 60, Issue 4, 219 - 226, 21.12.2021
https://doi.org/10.30797/madencilik.968984

Abstract

Kuru karıştırmalı değirmenler üzerine yapılan çalışmalar son yıllarda hız kazanmıştır. Birçok değişken üzerinde araştırmalar yapılmış ancak değirmenlerin temel değişkeni olan bilya dağılımının etkileri detaylı olarak incelenmemiştir. Geleneksel bilyalı değirmenlerde, farklı çapta bilyalar kullanılıp, uygun dağılımın seçimi ile öğütme performansı arttırılabilmektedir. Benzer yaklaşımın kuru karıştırmalı değirmenler için de uygulanabileceği böylelikle, öğütme performansı ve ürün kalitesi üzerinde olumlu etkilerinin olabileceği öngörülmektedir. Bu çalışma kapsamında değirmen performansını doğrudan etkileyen bir değişken olan bilya boyu dağılımının, dik kuru karıştırmalı değirmenin öğütme performansı üzerine etkisi, kesikli öğütme testleri ile incelenmiştir. Bu amaçla, literatürde geliştirilen malzeme boyu ve bilya boyu oranı değerleri kullanılarak seçilen bilya boylarının, dik karıştırmalı değirmen için, ikili ve üçlü bileşimleri farklı oranlarda karıştırılmıştır. Kalsit, klinker ve bakır cevheri için farklı karıştırma hızlarında yapılan testler sonucunda elde edilen veriler, enerji, boyut dağılımının şekli ve boyut indirgeme oranları yönlerinden değerlendirilmiştir. Ayrıca, farklı boyutlara sahip bilya dağılımının kullanılmasının, bilya aşınmasına etkileri tartışılmıştır. Çalışmadan elde edilen bulguların, giderek yaygınlaşması beklenen kuru karıştırmalı değirmen teknolojisi üzerinde faydalı olacağı düşünülmektedir.

References

  • Altun, O., Benzer, H., Enderle, U., 2013.Minerals Engineering, Effects of Operating Parameters on the Efficiency of Dry Stirred Milling, 43, 58-66.
  • Austin, L.G. 1984. Concepts in Process Design of Mills. Mining Engineering. 628-635.
  • Austin, L.G., Klimpel, R.R., Luckie, P.T. 1984. Process engineering of size reduction: Ball milling. New York: Society of Mining Engineers of the AIME.
  • Burford, B.D., Niva, E. 2008. Comparing energy efficiency in grinding mills, Metallurgical Plant Design and Operating Strategies Conference (MetPlant 2008). Perth, Australia.
  • Cho, H., Kwon, J., Kim, K., Mun, M. 2013. Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technology. 246, 62-634.
  • Cleary, P.W., Sinnott, M.D., Pereira, G.G. 2015. Computational Prediction of Performance for a Full Scale Isamill: Part 1 - Media Motion and Energy Utilisation in a Dry Mill. Minerals Engineering. 79, 220-238.
  • Çolak, S., Altun, O., Benzer, H., Gencer, Z., Koçak., 2018. Development of a preliminary media wear measurement test procedure for cement ball milling applications. Poweder Technology 325, 678 – 686.
  • Doll, A.G. 2017. Fine Grinding, a Refresher, 49th Annual Canadian Mineral Processors Operators Conference. Ottawa.
  • Duda, W.H. 1985. Cement Data Book Volume 1 and Volume 2. Wiesbaden ve Berlin: Bauverlag GmbH.
  • El-Shall, H., Somasundaran, P. 1984. Physico-Chemical aspects of grinding: a review of use of additives. Powder Technology. 38, 275-293.
  • Fadhel, H. and Frances, C. 2001. Wet batch grinding of alumina in a stirred bead mill. Powder Technology 119 (2-3), pp. 257-268.
  • Farber, Y. B., Durant, B., Bedesi, N. 2011. Effect of media size and mechanical properties on milling efficiency and media consumption. Minerals Engineering 24 (3-4), pp. 367-372.
  • Fuerstenau, D.W. 1995. Grinding aids. Kona. 13, 5-18.
  • Gao, M., Young, M., Allum, P. 2002. IsaMill Fine Grinding Technology and Its Industrial Applications at Mount Isa Mines, Proc. 34th Annual Meeting of the Canadian Mineral Processors. The Canadian Mineral Processors, Ottowa, 171-188.
  • Gupta, A., Yan, D.S. 2016. In Mineral Processing Design and Operations: An Introduction (Second Edition), Gupta, A., Yan, D.S. (Eds.). Elsevier. Chapter 10.
  • Harris, C.C. 1965. On the Rate of Energy in Comminution, A review of Physical and Mathematical Principles. Transaction IMM. 37-57.
  • Hasegawa, M., Kimata, M., Shimane, M., Shoji, T., Tsuruta, M. 2001. The effect of liquid additives on dry ultrafine grinding of quartz. Powder Technology. 114, 145-151.
  • Huang, Y.H., Chang, Y.L., Fleiter, T. 2016. A Critical Analysis of Energy Efficiency Improvement Potentials in Taiwan’s Cement Industry. Energy Policy. 96, 14-26.
  • Jankovic, A. 2003. Variables Affecting the Fine Grinding of Minerals Using Stirred Mills. Minerals Engineering. 16, 337-345.
  • Jankovic, A., 2000. Journal of Mining and Mettalurgy A: Mining, Fine grinding in Australian Minerals Industry, 36, 51-61.
  • Jayasundara, C.T., Yang, R.Y., Yu, A.B., Rubenstein, J., 2010. International Journal of Mineral Processing, Effects of Disc Rotation Speed and Media Loading on Particle Flow and Grinding Performance in a Horizontal Stirred Mill, 96 (1) 27–35.
  • Jeknavorian, A.A., Barry, E.F., Serafin, F. 1998. Determination of Grinding Aids in Portland Cement by Pyrolysis Gas Chromatography-Mass Spectrometer. Cement and Concrete Research. 28, 1335-1345.
  • Kwade, A., Blecher, L., Schwedes, J. 1996. Motion and stress intensity of grinding beads in stirred media mill Part 2: Stress intensity and its effect on comminution. Powder Technology 86 (1), pp. 69-76.
  • Madlool, N.A., Saidur, R., Hossain, M.S., Rahim, N.A. 2011. A Critical Review on Energy Use Savings in the Cement Industries. Renewable and Sustainable Energy Reviews. 15, 2042-2060.
  • Mankosa, M. J., Adel, G. T., Yoon, R. H. 1986. Effect of media size in stirred ball mill grinding of coal. Powder Technology 49 (1), pp. 75-82.
  • Metso Inc. 2002. Basics in Mineral Processing Handbook.
  • Pilevneli, C.C., Kizgut, S., Toroglu, T., Cuhadaroglu, D., Yigit, E., 2004. Powder Technology, Open and Closed Circuit Dry Grinding of Cement Mill Rejects in a Pilot Scale Vertical Stirred Mill, 139 (2) 165-174.
  • Prziwara, P., Breitung-Faes, S., Kwade, A., 2018. Minerals Engineering, Impact of the Powder Flow Behavior on Continuous Fine Grinding in Dry Operated Stirred Media Mills, 128, 215-223.
  • Rosin, P., Rammler, E. 1933. The Laws Governing the Fineness of Powdered Coal. Journal of the Institute of Fuel. 7, 29-36.
  • Roveri, E., Chaves, A.P. 2011. Mecanismos de Desgaste de Corpos Moedores em Moinhos de Bolas. Technologia em Metalurgia, Materiais e Mineração. 8(4), 261-266.
  • Sayadi, A.R., Khalesi, M.R., Borji, M.K. 2014. A Parametric Cost Model for Mineral Grinding Mills. Minerals Engineering. 55, 96-102.
  • Taylor, L., Skuse, D., Blackburn, S., Greenwood, R. 2020. Stirred Media Mills in the Mining Industry: Material Grindability, Energy-Size Relationships, and Operating Conditions. Powder Technology. 369, 1-16.
  • Toprak, N.A., Altun, O., Benzer, H. 2018. The effects of grinding aids on modelling of air classification of cement. Construction and Building Materials. 160, 564-573.
  • Yokoyama, T., Inoue, Y. 2007. Handbook of Powder Technology. Salman, A.D., Ghadiri, M., Hounslow M.J. (Eds.), Vol. 12, Elsevier, Chapter 10.
  • Zheng, J., Harris, C. C., Somasundaran, P. 1996. A study on grinding and energy input in stirred media mills. Powder Technology 86 (2), pp. 171-178.

The Impacts of Grinding Ball Size Distribution on Energy Consumption, Product Size and Media Wear within the Dry Stirred Mill

Year 2021, Volume 60, Issue 4, 219 - 226, 21.12.2021
https://doi.org/10.30797/madencilik.968984

Abstract

Nowadays, it is desired to use water resources more efficiently due to environmental factors. In this context, the importance of dry stirred mills is increasing day by day. In ball mills, grinding performance can be increased by using media with different sizes and choosing the appropriate grinding media size distribution. It is thought that a similar approach can be applied for dry-stirred mills. Thus, it is predicted that there may be effects on grinding performance and product quality. Although there has been an increasing amount of research on dry stirred mills lately, a missing point is the discussion of the effect of grinding media size distribution. Within the scope of the study, the effect of ball size distribution - a variable that directly affects the mill’s performance - on the grinding performance of the vertical dry stirred mill was investigated by batch grinding tests. For this purpose, the bi-modal and tri-modal compositions of the media sizes selected using the material size-ball size ratio values developed in the literature were mixed in different ratios for the vertical stirred mill. The data obtained from the tests performed at different stirrer speeds for calcite, clinker, and copper ores were evaluated in terms of energy, shape of the size distribution, and the obtained size reduction ratios. In addition, the effects of using different sized media distributions on media wear are discussed. It is thought that the findings obtained from the study will be beneficial on the dry stirred mill technology, which is expected to become increasingly widespread.

References

  • Altun, O., Benzer, H., Enderle, U., 2013.Minerals Engineering, Effects of Operating Parameters on the Efficiency of Dry Stirred Milling, 43, 58-66.
  • Austin, L.G. 1984. Concepts in Process Design of Mills. Mining Engineering. 628-635.
  • Austin, L.G., Klimpel, R.R., Luckie, P.T. 1984. Process engineering of size reduction: Ball milling. New York: Society of Mining Engineers of the AIME.
  • Burford, B.D., Niva, E. 2008. Comparing energy efficiency in grinding mills, Metallurgical Plant Design and Operating Strategies Conference (MetPlant 2008). Perth, Australia.
  • Cho, H., Kwon, J., Kim, K., Mun, M. 2013. Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technology. 246, 62-634.
  • Cleary, P.W., Sinnott, M.D., Pereira, G.G. 2015. Computational Prediction of Performance for a Full Scale Isamill: Part 1 - Media Motion and Energy Utilisation in a Dry Mill. Minerals Engineering. 79, 220-238.
  • Çolak, S., Altun, O., Benzer, H., Gencer, Z., Koçak., 2018. Development of a preliminary media wear measurement test procedure for cement ball milling applications. Poweder Technology 325, 678 – 686.
  • Doll, A.G. 2017. Fine Grinding, a Refresher, 49th Annual Canadian Mineral Processors Operators Conference. Ottawa.
  • Duda, W.H. 1985. Cement Data Book Volume 1 and Volume 2. Wiesbaden ve Berlin: Bauverlag GmbH.
  • El-Shall, H., Somasundaran, P. 1984. Physico-Chemical aspects of grinding: a review of use of additives. Powder Technology. 38, 275-293.
  • Fadhel, H. and Frances, C. 2001. Wet batch grinding of alumina in a stirred bead mill. Powder Technology 119 (2-3), pp. 257-268.
  • Farber, Y. B., Durant, B., Bedesi, N. 2011. Effect of media size and mechanical properties on milling efficiency and media consumption. Minerals Engineering 24 (3-4), pp. 367-372.
  • Fuerstenau, D.W. 1995. Grinding aids. Kona. 13, 5-18.
  • Gao, M., Young, M., Allum, P. 2002. IsaMill Fine Grinding Technology and Its Industrial Applications at Mount Isa Mines, Proc. 34th Annual Meeting of the Canadian Mineral Processors. The Canadian Mineral Processors, Ottowa, 171-188.
  • Gupta, A., Yan, D.S. 2016. In Mineral Processing Design and Operations: An Introduction (Second Edition), Gupta, A., Yan, D.S. (Eds.). Elsevier. Chapter 10.
  • Harris, C.C. 1965. On the Rate of Energy in Comminution, A review of Physical and Mathematical Principles. Transaction IMM. 37-57.
  • Hasegawa, M., Kimata, M., Shimane, M., Shoji, T., Tsuruta, M. 2001. The effect of liquid additives on dry ultrafine grinding of quartz. Powder Technology. 114, 145-151.
  • Huang, Y.H., Chang, Y.L., Fleiter, T. 2016. A Critical Analysis of Energy Efficiency Improvement Potentials in Taiwan’s Cement Industry. Energy Policy. 96, 14-26.
  • Jankovic, A. 2003. Variables Affecting the Fine Grinding of Minerals Using Stirred Mills. Minerals Engineering. 16, 337-345.
  • Jankovic, A., 2000. Journal of Mining and Mettalurgy A: Mining, Fine grinding in Australian Minerals Industry, 36, 51-61.
  • Jayasundara, C.T., Yang, R.Y., Yu, A.B., Rubenstein, J., 2010. International Journal of Mineral Processing, Effects of Disc Rotation Speed and Media Loading on Particle Flow and Grinding Performance in a Horizontal Stirred Mill, 96 (1) 27–35.
  • Jeknavorian, A.A., Barry, E.F., Serafin, F. 1998. Determination of Grinding Aids in Portland Cement by Pyrolysis Gas Chromatography-Mass Spectrometer. Cement and Concrete Research. 28, 1335-1345.
  • Kwade, A., Blecher, L., Schwedes, J. 1996. Motion and stress intensity of grinding beads in stirred media mill Part 2: Stress intensity and its effect on comminution. Powder Technology 86 (1), pp. 69-76.
  • Madlool, N.A., Saidur, R., Hossain, M.S., Rahim, N.A. 2011. A Critical Review on Energy Use Savings in the Cement Industries. Renewable and Sustainable Energy Reviews. 15, 2042-2060.
  • Mankosa, M. J., Adel, G. T., Yoon, R. H. 1986. Effect of media size in stirred ball mill grinding of coal. Powder Technology 49 (1), pp. 75-82.
  • Metso Inc. 2002. Basics in Mineral Processing Handbook.
  • Pilevneli, C.C., Kizgut, S., Toroglu, T., Cuhadaroglu, D., Yigit, E., 2004. Powder Technology, Open and Closed Circuit Dry Grinding of Cement Mill Rejects in a Pilot Scale Vertical Stirred Mill, 139 (2) 165-174.
  • Prziwara, P., Breitung-Faes, S., Kwade, A., 2018. Minerals Engineering, Impact of the Powder Flow Behavior on Continuous Fine Grinding in Dry Operated Stirred Media Mills, 128, 215-223.
  • Rosin, P., Rammler, E. 1933. The Laws Governing the Fineness of Powdered Coal. Journal of the Institute of Fuel. 7, 29-36.
  • Roveri, E., Chaves, A.P. 2011. Mecanismos de Desgaste de Corpos Moedores em Moinhos de Bolas. Technologia em Metalurgia, Materiais e Mineração. 8(4), 261-266.
  • Sayadi, A.R., Khalesi, M.R., Borji, M.K. 2014. A Parametric Cost Model for Mineral Grinding Mills. Minerals Engineering. 55, 96-102.
  • Taylor, L., Skuse, D., Blackburn, S., Greenwood, R. 2020. Stirred Media Mills in the Mining Industry: Material Grindability, Energy-Size Relationships, and Operating Conditions. Powder Technology. 369, 1-16.
  • Toprak, N.A., Altun, O., Benzer, H. 2018. The effects of grinding aids on modelling of air classification of cement. Construction and Building Materials. 160, 564-573.
  • Yokoyama, T., Inoue, Y. 2007. Handbook of Powder Technology. Salman, A.D., Ghadiri, M., Hounslow M.J. (Eds.), Vol. 12, Elsevier, Chapter 10.
  • Zheng, J., Harris, C. C., Somasundaran, P. 1996. A study on grinding and energy input in stirred media mills. Powder Technology 86 (2), pp. 171-178.

Details

Primary Language Turkish
Subjects Geosciences, Multidisciplinary
Journal Section Orijinal Araştırma
Authors

Tolga SERT> (Primary Author)
HACETTEPE UNIVERSITY
0000-0001-6625-5514
Türkiye


Okay ALTUN>
HACETTEPE UNIVERSITY
0000-0002-9823-3130
Türkiye

Supporting Institution Hacettepe Üniversitesi Bilimsel Araştırmalar Birimi
Project Number 119M850
Publication Date December 21, 2021
Submission Date July 9, 2021
Acceptance Date August 31, 2021
Published in Issue Year 2021, Volume 60, Issue 4

Cite

Bibtex @research article { madencilik968984, journal = {Scientific Mining Journal}, issn = {2564-7024}, eissn = {2587-2613}, address = {Selanik Cad. No: 19/4 06650 Kızılay-Çankaya / ANKARA - TURKEY}, publisher = {Chamber of Mining Engineers of Turkey}, year = {2021}, volume = {60}, number = {4}, pages = {219 - 226}, doi = {10.30797/madencilik.968984}, title = {Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması}, key = {cite}, author = {Sert, Tolga and Altun, Okay} }
APA Sert, T. & Altun, O. (2021). Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması . Scientific Mining Journal , 60 (4) , 219-226 . DOI: 10.30797/madencilik.968984
MLA Sert, T. , Altun, O. "Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması" . Scientific Mining Journal 60 (2021 ): 219-226 <http://www.mining.org.tr/en/pub/issue/66361/968984>
Chicago Sert, T. , Altun, O. "Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması". Scientific Mining Journal 60 (2021 ): 219-226
RIS TY - JOUR T1 - The Impacts of Grinding Ball Size Distribution on Energy Consumption, Product Size and Media Wear within the Dry Stirred Mill AU - TolgaSert, OkayAltun Y1 - 2021 PY - 2021 N1 - doi: 10.30797/madencilik.968984 DO - 10.30797/madencilik.968984 T2 - Scientific Mining Journal JF - Journal JO - JOR SP - 219 EP - 226 VL - 60 IS - 4 SN - 2564-7024-2587-2613 M3 - doi: 10.30797/madencilik.968984 UR - https://doi.org/10.30797/madencilik.968984 Y2 - 2021 ER -
EndNote %0 Scientific Mining Journal Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması %A Tolga Sert , Okay Altun %T Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması %D 2021 %J Scientific Mining Journal %P 2564-7024-2587-2613 %V 60 %N 4 %R doi: 10.30797/madencilik.968984 %U 10.30797/madencilik.968984
ISNAD Sert, Tolga , Altun, Okay . "Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması". Scientific Mining Journal 60 / 4 (December 2021): 219-226 . https://doi.org/10.30797/madencilik.968984
AMA Sert T. , Altun O. Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması. Mining. 2021; 60(4): 219-226.
Vancouver Sert T. , Altun O. Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması. Scientific Mining Journal. 2021; 60(4): 219-226.
IEEE T. Sert and O. Altun , "Kuru Karıştırmalı Değirmende Bilya Boyu Dağılımının Enerji, Ürün Tane Boyu ve Bilya Aşınması Üzerindeki Etkilerinin Araştırılması", Scientific Mining Journal, vol. 60, no. 4, pp. 219-226, Dec. 2021, doi:10.30797/madencilik.968984

22562 22561 22560 22590 22558