Research Article
PDF EndNote BibTex RIS Cite

Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone

Year 2022, Volume 61, Issue 3, 127 - 134, 30.09.2022
https://doi.org/10.30797/madencilik.971842

Abstract

In this paper, an effective method for the classification process simulation in 75¬mm hydrocyclone is considered. The simulation results and computational time are compared using Reynolds stress model (RSM) and different large eddy simulation (LES) subgrid-scale models as turbulence models, and the volume of fluid model (VOF) as a multiphase model. The Lagrangian discrete phase model (DPM) is used to simulate the classification process of particles. As the experimental result for comparison of simulation results, Hsieh's experimental data are used. When the different LES subgrid-scale models are used, the solution converges stably by various solution convergence methods without increasing the grid numbers or reducing the size of time steps than RSM model. As a result, it is confirmed that when an appropriate simulation method is applied with the LES-WMLES S-Omega model, more accurate axial water flow velocity distribution and particle classification simulation results can be obtained at a computational cost similar to that of using the RSM model.

References

  • Brennan, M.S., Narasimha, M., Holtham, P.N. 2007. Multiphase modelling of hydrocyclones - prediction of cut-size. Minerals Engineering 20, 395-406. doi:10.1016/j.mineng.2006.10.010.
  • Cui, B., Zhang, C., Wei, D., Lu, S., Feng, Y. 2017. Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters. Powder Technology 322, 114-123. doi:10.1016/j.powtec.2017.09.010.
  • Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z. 2013. On the simulation of hydrocyclones using CFD. The Canadian Journal of Chemical Engineering 91(5), 950-958. doi:10.1002/cjce.21705.
  • Ghodrat, M., Qi, Z., Kuang, S.B., Ji, L., Yu, A.B. 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Minerals Engineering 90, 55-69. doi:10.1016/j.mineng.2016.03.017.
  • Hsieh, K.T. 1988. Phenomenological model of the hydrocyclone. Ph.D. thesis. Utah: The University of Utah.
  • Jiang, L., Liu, P., Zhang, Y., Yang, X., Wang, H., Gui, X. 2019. Design boundary layer structure for improving the particle separation performance of a hydrocyclone. Powder Technology 350, 1-14. doi:10.1016/j.powtec.2019.03.026.
  • Kuang, S.B., Chu, K.W., Yu, A.B., Vince, A. 2012. Numerical study of liquid¬gas-solid flow in classifying hydrocyclones: Effect of feed solids concentration. Minerals Engineering 31, 17-31. doi:10.1016/j.mineng.2012.01.003.
  • Li, Y., Liu, C., Zhang, T., Li, D., Zheng, L. 2018. Experimental and Numerical Study of a Hydrocyclone with the Modification of Geometrical Structure. The Canadian Journal of Chemical Engineering 96, 2638-2649. doi:10.1002/cjce.23206.
  • Mangadoddy, N., Vakamalla, T.R., Kumar, M., Mainza, A. 2019. Computational modelling of particle-fluid dynamics in comminution and classification: a review. Mineral Processing and Extractive Metallurgy 129(2), 145-156. doi:10.1080/25726641.2019.1708657.
  • Narasimha, M., Brennan, M., Holtham, P.N. 2012. CFD modeling of hydrocyclones: Prediction of particle size segregation. Minerals Engineering 39, 173-183.
  • Padhi, M., Mangadoddy, N., Sreenivas, T., Vakamalla, T.R., Mainza, A.N. 2019. Study on multi-component particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques. Separation and Purification Technology 229, 115698. doi:10.1016/j.seppur.2019.115698.
  • Padhi, M., Kumar, M., Mangadoddy, N. 2020. Understanding the bicomponent particle separation mechanism in a hydrocyclone using a computational fluid dynamics model. Industrial & Engineering Chemistry Research 59(25), 11621- 11644. doi:10.1021/acs.iecr.9b06747.
  • Perez, D., Cornejo, P., Rodriguez, C., Concha, F. 2018. Transition from spray to roping in hydrocyclones. Minerals Engineering 123, 71-84. doi:10.1016/j.mineng.2018.04.008.
  • Silva, D.O., Vieira, L.G.M., Barrozo, M.A.S. 2014. Optimization of design and performance of solid-liquid separators: A thickener hydrocyclone. Chemical Engineering & Technology 38(2), 319-326. doi:10.1002/ceat.201300464.
  • Vakamalla, T.R., Koruprolu, V.B., Arugonda, R., Mangadoddy, N. 2016. Development of novel hydrocyclone designs for improved fines classification Using multiphase CFD model. Separation and Purification Technology 175, 481-497. doi:10.1016/j.seppur.2016.10.026.
  • Vakamalla, T.R., Mangadoddy, N. 2019. The dynamic behaviour of a large-scale 250-mm hydrocyclone: A CFD study. Asia-Pacific Journal of Chemical Engineering 14(2), e2287. doi: 10.1002/apj.2287.
  • Wang, C., Ji, C., Zou, J. 2015. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone. The Canadian Journal of Chemical Engineering 93, 1802-1811. doi:10.1002/cjce.22274.
  • Ye, J., Xu, Y., Song, X., Yu, J. 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chemical Engineering Research and Design 144, 135-149. doi:10.1016/j.cherd.2019.02.006.
  • Zhang, Y., Cai, P., Jiang, F., Dong, K., Jiang, Y., Wang, B. 2017. Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technology. 322, 471-489. doi:10.1016/j.powtec.2017.09.031.

Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone

Year 2022, Volume 61, Issue 3, 127 - 134, 30.09.2022
https://doi.org/10.30797/madencilik.971842

Abstract

In this paper, an effective method for the classification process simulation in 75¬mm hydrocyclone is considered. The simulation results and computational time are compared using Reynolds stress model (RSM) and different large eddy simulation (LES) subgrid-scale models as turbulence models, and the volume of fluid model (VOF) as a multiphase model. The Lagrangian discrete phase model (DPM) is used to simulate the classification process of particles. As the experimental result for comparison of simulation results, Hsieh's experimental data are used. When the different LES subgrid-scale models are used, the solution converges stably by various solution convergence methods without increasing the grid numbers or reducing the size of time steps than RSM model. As a result, it is confirmed that when an appropriate simulation method is applied with the LES-WMLES S-Omega model, more accurate axial water flow velocity distribution and particle classification simulation results can be obtained at a computational cost similar to that of using the RSM model.

References

  • Brennan, M.S., Narasimha, M., Holtham, P.N. 2007. Multiphase modelling of hydrocyclones - prediction of cut-size. Minerals Engineering 20, 395-406. doi:10.1016/j.mineng.2006.10.010.
  • Cui, B., Zhang, C., Wei, D., Lu, S., Feng, Y. 2017. Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters. Powder Technology 322, 114-123. doi:10.1016/j.powtec.2017.09.010.
  • Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z. 2013. On the simulation of hydrocyclones using CFD. The Canadian Journal of Chemical Engineering 91(5), 950-958. doi:10.1002/cjce.21705.
  • Ghodrat, M., Qi, Z., Kuang, S.B., Ji, L., Yu, A.B. 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Minerals Engineering 90, 55-69. doi:10.1016/j.mineng.2016.03.017.
  • Hsieh, K.T. 1988. Phenomenological model of the hydrocyclone. Ph.D. thesis. Utah: The University of Utah.
  • Jiang, L., Liu, P., Zhang, Y., Yang, X., Wang, H., Gui, X. 2019. Design boundary layer structure for improving the particle separation performance of a hydrocyclone. Powder Technology 350, 1-14. doi:10.1016/j.powtec.2019.03.026.
  • Kuang, S.B., Chu, K.W., Yu, A.B., Vince, A. 2012. Numerical study of liquid¬gas-solid flow in classifying hydrocyclones: Effect of feed solids concentration. Minerals Engineering 31, 17-31. doi:10.1016/j.mineng.2012.01.003.
  • Li, Y., Liu, C., Zhang, T., Li, D., Zheng, L. 2018. Experimental and Numerical Study of a Hydrocyclone with the Modification of Geometrical Structure. The Canadian Journal of Chemical Engineering 96, 2638-2649. doi:10.1002/cjce.23206.
  • Mangadoddy, N., Vakamalla, T.R., Kumar, M., Mainza, A. 2019. Computational modelling of particle-fluid dynamics in comminution and classification: a review. Mineral Processing and Extractive Metallurgy 129(2), 145-156. doi:10.1080/25726641.2019.1708657.
  • Narasimha, M., Brennan, M., Holtham, P.N. 2012. CFD modeling of hydrocyclones: Prediction of particle size segregation. Minerals Engineering 39, 173-183.
  • Padhi, M., Mangadoddy, N., Sreenivas, T., Vakamalla, T.R., Mainza, A.N. 2019. Study on multi-component particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques. Separation and Purification Technology 229, 115698. doi:10.1016/j.seppur.2019.115698.
  • Padhi, M., Kumar, M., Mangadoddy, N. 2020. Understanding the bicomponent particle separation mechanism in a hydrocyclone using a computational fluid dynamics model. Industrial & Engineering Chemistry Research 59(25), 11621- 11644. doi:10.1021/acs.iecr.9b06747.
  • Perez, D., Cornejo, P., Rodriguez, C., Concha, F. 2018. Transition from spray to roping in hydrocyclones. Minerals Engineering 123, 71-84. doi:10.1016/j.mineng.2018.04.008.
  • Silva, D.O., Vieira, L.G.M., Barrozo, M.A.S. 2014. Optimization of design and performance of solid-liquid separators: A thickener hydrocyclone. Chemical Engineering & Technology 38(2), 319-326. doi:10.1002/ceat.201300464.
  • Vakamalla, T.R., Koruprolu, V.B., Arugonda, R., Mangadoddy, N. 2016. Development of novel hydrocyclone designs for improved fines classification Using multiphase CFD model. Separation and Purification Technology 175, 481-497. doi:10.1016/j.seppur.2016.10.026.
  • Vakamalla, T.R., Mangadoddy, N. 2019. The dynamic behaviour of a large-scale 250-mm hydrocyclone: A CFD study. Asia-Pacific Journal of Chemical Engineering 14(2), e2287. doi: 10.1002/apj.2287.
  • Wang, C., Ji, C., Zou, J. 2015. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone. The Canadian Journal of Chemical Engineering 93, 1802-1811. doi:10.1002/cjce.22274.
  • Ye, J., Xu, Y., Song, X., Yu, J. 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chemical Engineering Research and Design 144, 135-149. doi:10.1016/j.cherd.2019.02.006.
  • Zhang, Y., Cai, P., Jiang, F., Dong, K., Jiang, Y., Wang, B. 2017. Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technology. 322, 471-489. doi:10.1016/j.powtec.2017.09.031.

Details

Primary Language English
Subjects Engineering, Multidisciplinary
Journal Section Research Article
Authors

Song Gun KANG> (Primary Author)
Kim chaek university of technology
0000-0003-1237-3712
North Korea


Kwang Chol KİM This is me
Kim chaek university of technology
0000-0002-6270-0702
North Korea


Sok Chol RYOM This is me
Kim chaek university of technology
0000-0003-1838-4148
North Korea


Jin Hyok Rİ This is me
Kim chaek university of technology
0000-0002-4725-8856
North Korea

Publication Date September 30, 2022
Application Date July 15, 2021
Acceptance Date February 10, 2022
Published in Issue Year 2022, Volume 61, Issue 3

Cite

Bibtex @research article { madencilik971842, journal = {Scientific Mining Journal}, issn = {2564-7024}, eissn = {2587-2613}, address = {Selanik Cad. No: 19/4 06650 Kızılay-Çankaya / ANKARA - TURKEY}, publisher = {Chamber of Mining Engineers of Turkey}, year = {2022}, volume = {61}, number = {3}, pages = {127 - 134}, doi = {10.30797/madencilik.971842}, title = {Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone}, key = {cite}, author = {Kang, Song Gun and Kim, Kwang Chol and Ryom, Sok Chol and Ri, Jin Hyok} }
APA Kang, S. G. , Kim, K. C. , Ryom, S. C. & Ri, J. H. (2022). Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone . Scientific Mining Journal , 61 (3) , 127-134 . DOI: 10.30797/madencilik.971842
MLA Kang, S. G. , Kim, K. C. , Ryom, S. C. , Ri, J. H. "Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone" . Scientific Mining Journal 61 (2022 ): 127-134 <http://www.mining.org.tr/en/pub/issue/72907/971842>
Chicago Kang, S. G. , Kim, K. C. , Ryom, S. C. , Ri, J. H. "Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone". Scientific Mining Journal 61 (2022 ): 127-134
RIS TY - JOUR T1 - Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone AU - Song GunKang, Kwang CholKim, Sok CholRyom, Jin HyokRi Y1 - 2022 PY - 2022 N1 - doi: 10.30797/madencilik.971842 DO - 10.30797/madencilik.971842 T2 - Scientific Mining Journal JF - Journal JO - JOR SP - 127 EP - 134 VL - 61 IS - 3 SN - 2564-7024-2587-2613 M3 - doi: 10.30797/madencilik.971842 UR - https://doi.org/10.30797/madencilik.971842 Y2 - 2022 ER -
EndNote %0 Scientific Mining Journal Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone %A Song Gun Kang , Kwang Chol Kim , Sok Chol Ryom , Jin Hyok Ri %T Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone %D 2022 %J Scientific Mining Journal %P 2564-7024-2587-2613 %V 61 %N 3 %R doi: 10.30797/madencilik.971842 %U 10.30797/madencilik.971842
ISNAD Kang, Song Gun , Kim, Kwang Chol , Ryom, Sok Chol , Ri, Jin Hyok . "Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone". Scientific Mining Journal 61 / 3 (September 2022): 127-134 . https://doi.org/10.30797/madencilik.971842
AMA Kang S. G. , Kim K. C. , Ryom S. C. , Ri J. H. Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Mining. 2022; 61(3): 127-134.
Vancouver Kang S. G. , Kim K. C. , Ryom S. C. , Ri J. H. Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Scientific Mining Journal. 2022; 61(3): 127-134.
IEEE S. G. Kang , K. C. Kim , S. C. Ryom and J. H. Ri , "Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone", Scientific Mining Journal, vol. 61, no. 3, pp. 127-134, Sep. 2022, doi:10.30797/madencilik.971842

22562 22561 22560 22590 22558