Review
PDF EndNote BibTex RIS Cite

Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması

Year 2022, Volume 61, Issue 3, 168 - 178, 30.09.2022
https://doi.org/10.30797/madencilik.982123

Abstract

Endüstri 4.0 devrimi ve Nesnelerin İnterneti (IoT) gibi teknolojilerle dijitalleşme, kaynaklarımızın ve ekonomilerimizin döngüsel olmasını gerektirmektedir. Başta Avrupa Birliği olmak üzere tüm ülkeler, kritik hammaddelerin sorumlu tüketiminin, üretiminin ve geri dönüşümünün sürdürülebilir kalkınma hedeflerine ulaşmanın bir yolu olarak çok önemli olduğu konusunda hemfikirdir. Ömrünü tamamlamış ürünlerden kritik hammaddelerin geri kazanılması için uygun maliyetli bir geri dönüşüm yöntemi, madencilikten çok daha az çevresel etkiye sahiptir. Biyo & hidrometalurjik yöntemler, kritik hammaddelerin, özellikle nadir toprak elementlerinin (NTE) çıkarılması için hızlı gelişen, seçici, çevre dostu ve uygun maliyetli teknolojilerdir. Bu makale, ikincil kaynaklara genel bir bakış sağlamakta ve kritik hammaddelerin kazanımı için ekonomik bir yol olarak hizmet edebilecek bazı umut verici yöntemlerin kullanımına ilişkin yürütülen çalışmaların senaryosunu özetlemektedir.

References

  • Akcil, A., Sun, Z., Panda, S., 2020. COVID-19 disruptions to tech-metals supply are a wake-up call. Nature, 587, 365-367.
  • Awasthi, A. K., Li, J., Koh, L., Ogunseitan, O. A., 2019. Circular economy and electronic waste. Nature Electronics, 2, 86–89.
  • Avrupa Komisyonu, 2010. Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials. Erişim tarihi: 30.04. 2020. http://ec.europa.eu/DocsRoom/documents/5662/attachments/1/translations.
  • Avrupa Komisyonu, 2017. The role of waste-to-energy in the circular economy. Communication from the commission to the European Parliament, the council, the European economic and social committee and the committee of the regions. Erişim tarihi: 25.04.2021. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0034&from=EN.
  • Avrupa Komisyonu, 2020a. Study on the EU's list of Critical Raw Materials. Erişim tarihi: 25.04.2021. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.
  • Avrupa Komisyonu, 2020b. Circular Economy Action Plan The European Green Deal. Erişim tarihi: 25.06.2021. https://ec.europa.eu/environment/pdf/circular-economy/new_circular_economy_action_plan.pdf.
  • Avrupa Komisyonu, 2020c. Communication ‘Critical Raw Mate¬rials Resilience: Charting a Path towards greater Security and Sustainability’, COM (2020) 474 final, 2020. Erişim tarihi: 28.06.2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474
  • Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T.V., Yang, Y., Walton, A., Buchert, M., 2013. Recycling of rare earths: A critical review. J. Clean. Prod., 51, 1–22.
  • Bobba, S., Carrara, S., Huisman, J., Mathieux, F., Pavel, C., 2020. Critical Raw Materials for Strategic Technologies and Sectors in the EU-A Foresight Study. ISBN 978-92-76-15336-8. doi: 10.2873/58081
  • Bogart, J. A., Cole, B. E., Boreen, M. A., Lippincott, C. A., Manor, B. C., Carroll, P. J., Schelter, E. J., 2016. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures. Proc. Natl. Acad. Sci. U. S. A., 113, 14887–14892.
  • Buchert, M., Manhart, A., Bleher, D., Pingel, D., 2012. Recycling Critical Raw Materials from Waste Electronic Equipment. Freiburg: Öko-Institut., 49(0), 30-40.
  • Chan, K. H., Malik, M., Anawati, J., Azimi, G., 2020. Recycling of end-of-life lithium-ion battery of electric vehicles. Symposium on Rare Metal Technology, 2020 held at the 149th Annual Meeting and Exhibition, TMS 2020; San Diego; United States, 238549, 23-32. DOI: 10.1007/978-3-030-36758-9_3.
  • Charles, R. G., Douglas, P., Dowling, M., Liversage, G., Davies, M. L., 2020. Towards Increased Recovery of Critical Raw Materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling, 161, 104923.
  • Cheisson, T., Cole, B. E., Manor, B. C., Carroll, P. J., Schelter, E. J., 2019. Phosphoryl-ligand adducts of rare earth-TriNOx complexes: systematic studies and implications for separations chemistry. ACS Sustain. Chem. Eng., 7, 4993–5001.
  • Chen, W. S., Hsu, L. L., Wang, L. P., 2018. Recycling the GaN waste from LED industry by pressurized leaching method. Metals, 8, 861.
  • Chung, J., Seo, B., Lee, J., Kim, J. Y., 2021. Comparative analysis of I2-KI and HNO3 leaching in a life cycle perspective: Towards sustainable recycling of end-of-life c-Si PV panel. Journal of Hazardous Materials, 404,123989.
  • Deloitte Sustainability, 2017. Study on the review of the list of Critical Raw Materials — Criticality Assessment, Report prepared for the European Commission, doi:10.2873/876644.
  • EIT RawMaterials, 2020a. Erişim tarihi: 25.06.2021. https://eitrawmaterials.eu/?attachment_id=6207#iLightbox[postimages]/0
  • EIT RawMaterials, 2020b. EIT RawMaterials supports the world after COVID-19 in securing a sustainable supply of raw materials and advanced materials – for Europe’s green future and competitiveness. Erişim tarihi: 20.05.2020. https://eitrawmaterials.eu/wp-content/uploads/2020/04/EIT-RawMaterials-Position-Paper-on-COVID-19.pdf.
  • EIT RawMaterials, 2020c. EIT RawMaterials supports the European Green Deal with a focus on raw materials and advanced materials to secure Europe’s industrial leadership and sustainable future. Erişim tarihi: 20.05.2020. https://eitrawmaterials.eu/wp-content/uploads/2020/01/2020-01-28_EIT-RawMaterials-Postion-Paper-Green-Deal.pdf.
  • Gergoric, M., Barrier, A., Retegan, T., 2019. Recovery of Rare-Earth Elements from Neodymium Magnet Waste Using Glycolic, Maleic, and Ascorbic Acids Followed by Solvent Extraction. Journal of Sustainable Metallurgy, 5(1), 85-96.
  • Ghassa, S., Farzanegan, A., Gharabaghi, M., Abdollahi, H., 2020. Novel bioleaching of waste lithium ion batteries by mixed moderate thermophilic microorganisms, using iron scrap as energy source and reducing agent. Hydrometallurgy, 197, 105465.
  • Ilyas, S., Srivastava, R. R., Kim, H., Cheema, H. A., 2020. Hydrometallurgical recycling of palladium and platinum from exhausted diesel oxidation catalysts. Separation and Purification Technology, 248, 117029.
  • Itakura, T., Sasai, R., Itoh, H., 2006. Resource recovery from NdeFeeB sintered magnet by hydrothermal treatment. J. Alloys Compd., 408, 1382-1385.
  • Jha, M. K., Kumari, A., Panda, R., Kumar, Rajesh, J., Yoo, K., Lee, J. Y., 2016. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 2–26.
  • Kitagawa, J., Uemura, R., 2017. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process. Scientific Reports, 7(1), 8039.
  • Koyama, K., Kitajima, A., Tanaka, M., 2009. Selective leaching of rare-earth elements from an Nd-Fe-B magnet. Kidorui, 54, 36-37.
  • Krystofik, M., Bustamante, M., Badami, K., 2018. Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135, 24–33.
  • Kubota, F., Baba, Y., Goto, M., 2012. Application of Ionic Liquids for the Separation of Rare Earth Metals. Solv. Extr. Res. Dev. Jpn., 19, 17-28.
  • Kumari, A., Sinha, M. K., Pramanik, S., Sahu, S. K., 2018. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects. Waste Management, 75, 486-498.
  • Leader, A., Gaustad, G., Babbitt, C., 2019. The Effect of Critical Material Prices on the Competitiveness of Clean Energy Tech¬nologies. Materials for Renewable and Sustainable Energy, 8(2), 1–17. https://doi.org/10.1007/s40243-019-0146-z.
  • Liu, X., Liu, H., Wu, W., Zhang, X., Gu, T., Zhu, M., Tan, W., 2020. Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Frontiers in Microbiology, 10, 3058. Doi:10.3389/ fmicb.2019.03058.
  • Løvik, A. N., Hagelüken, C., Wäger, P., 2018. Improving supply security of critical metals: Current developments and research in the EU. Sustainable Materials and Technologies, 15, 9-18.
  • Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., Sun, Z., 2018. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng., 6, 1504–1521.
  • Massari, S., Ruberti, M., 2013. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38, 36–43.
  • Muddana, M. H., Baral, S.S., 2019. A comparative study of the extraction of metals from the spent fluid catalytic cracking catalyst using chemical leaching and bioleaching by Aspergillus Niger. Journal of Environmental Chemical Engineering. 7(5) DOI: 10.1016/j.jece.2019.103335.
  • Munir, H., Srivastava, R. R., Kim, H., Ilyas, S., Khosa, M. K., Yameen, B., 2020. Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. J. Chem. Tech. Biotech., 95, 2286–2294.
  • Nguyen, V.N.H., Lee, M.S, 2021. Separation of Co(II), Ni(II), Mn(II) and Li(I) from synthetic sulfuric acid leaching solution of spent lithium ion batteries by solvent extraction. Journal of Chemical Technology and Biotechnology, 96(5), 1205-1217.
  • Othman, E.A., van der Ham, A.G.J., Miedema, H., Kersten, S.R.A., 2020. Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Separation and Purification Technology, 252,117435.
  • Padhan, E., Nayak, A.K., Sarangi, K., 2017. Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy, 174, 210–215.
  • Padhan, E., Sarangi, K., 2017. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272. Hydrometallurgy, 167, 134-140.
  • Panda, S., Akcil, A., 2021. Securing supplies of technology critical metals: Resource recycling and waste management. Waste Manag., 123, 48-51.
  • Pavón, S., Fortuny, A., Coll, M.T., Sastre, A.M., 2018. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction. Journal of Environmental Management, 222, 359-367.
  • Provazi, K., Campos, B.A., Espinosa, D.C.R., Tenório, J.A.S., 2011. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manage., 31, 59-64.
  • Rademaker, J. H., Kleijn, R., Yang, Y., 2013. Recycling as a Strategy against Rare Earth Element Criticality: A Systemic Evaluation of the Potential Yield of NdFeB Magnet Recycling. Environ. Sci. Technol., 47, 10129–10136.
  • Resmi Gazete, 2021. Yeşil Mutabakat Eylem Planı. Erişim tarihi: 23.07.2021. https://www.resmigazete.gov.tr/eskiler/2021/07/20210716-8.pdf.
  • Savvilotidou, V., Gidarakos, E., 2020. Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. Journal of Cleaner Production, 250,119440.
  • Schulze, R., Buchert, M., 2016. Estimates of global REE recycling potentials from NdFeB magnet material. Resources, Conservation and Recycling 113, 12–27.
  • Scott, K., Barrett, J., 2015. An integration of net imported emissions into climate change targets. Environ. Sci. Policy, 52, 150–215.
  • Sethurajan, M., Gaydardzhiev, S., 2021. Bioprocessing of spent lithium ion batteries for critical metals recovery – A review. Resources, Conservation and Recycling, 165, 105225.
  • Statista, Statista Dossier Commercial UAVs, 2019. Erişim tarihi: 05.08.2021. https://www.statista.com/statistics/431717/global-uav-market-size-by-application/.
  • Sun, D. T., Gasilova, N., Yang, S., Oveisi, E., Queen, W. L., 2018. Rapid, selective extraction of trace amounts of gold from complex water mixtures with a metal-organic framework (MOF)/polymer composite. J. Am. Chem. Soc., 140, 16697–16703.
  • Tan, Q., Deng, C., Li, J., 2016. Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci. Rep., 6, 1–10.
  • US-DOE, 2019. Testimony of Assistant Secretary Daniel Simmons for Energy Efficiency and Renewable Energy, U.S. Department of Energy Before the U.S. Senate Committee on Energy & Natural Resources, Erişim tarihi: 25.06.2021. https://www.energy.gov/sites/prod/files/2019/11/f68/11-6-19-Daniel-Simmons-FT-SENR.pdf.
  • Turcheniuk, K., Bondarev, D., Singhal, V., Yushin, G., 2018. Ten years left to redesign lithium-ion batteries. Nature, 559 (7715), 467-470.
  • UNECE, 2020. Securing critical raw materials supply is key to the response to ‎COVID-19‎. Erişim tarihi: 27.05.2020. https://www.unece.org/info/media/presscurrent-press-h/sustainable-energy/2020/securing-critical-raw-materials-supply-is-key-to-the-response-to-covid-19/doc.html.
  • Vander Hoogerstraete, T., Wellens, S., Verachtert, K., Binnemans, K., 2013. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem., 15, 919–927.
  • Venkatesan, P., Vander Hoogerstraete, T., Binnemans, K., Sun, Z., Sietsma, J., Yang, Y., 2018. Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Roomerature Electrolysis Pretreatment Step. ACS Sustain. Chem. Eng., 6, 9375–9382.
  • Wellens, S., Thijs, B., Binnemans, K., 2012. An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem., 14 (2012), 1657-1665.
  • Yang, Y., Walton, A., Sheridan, R., Güth, K., Gauß, R., Gutfleisch, O., Buchert, M., Steenari, B.-M., Van Gerven, T., Jones, P. T., Binnemans, K., 2017. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy, 3(1), 122-149. Yeşil Mutabakat Eylem Planı 2021. Erişim tarihi: 03.08.2021. https://ticaret.gov.tr/data/60f1200013b876eb28421b23/MUTABAKAT%20YE%C5%9E%C4%B0L.pdf.
  • Yurramendi, L., Gijsemans, L., Forte, F., Aldana, J. L., del Río, C., Binnemans, K., 2019. Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy, 187, 38–44.
  • Zhao, J., Qu, X., Qu, J., Zhang, B., Ning, Z., Xie, H., Zhou, X., Song, Q., Xing, P., Yin, H., 2019. Extraction of Co and Li2CO3 from cathode materials of spent lithium-ion batteries through a combined acid-leaching and electro-deoxidation approach. J. Hazard. Mater. 379, 120817.

Gaining Critical Raw Materials to Circular Economy by Recycling

Year 2022, Volume 61, Issue 3, 168 - 178, 30.09.2022
https://doi.org/10.30797/madencilik.982123

Abstract

Digitalization with technologies such as industry 4.0 revolution and Internet of Things (IoT), it is requires our resources and economies to be circular. All countries, especially the European Union agree that responsible consumption, production and recycling of critical raw materials is essential as a means of achieving sustainable development goals. A cost-effective recycling method for the recovery of critical raw materials from end-of-life products has far less environmental impact than mining. Bio&hydrometallurgical methods are a fast developing, selective, eco-friendly, and cost-effective technologies for the extraction of critical raw materials especially rare earth elements (REE). This article provides an overview of secondary resources and summarizes presents scenario of studies carried out on the use of some promising methods which could serve as an economical means for recovering CRMs.

References

  • Akcil, A., Sun, Z., Panda, S., 2020. COVID-19 disruptions to tech-metals supply are a wake-up call. Nature, 587, 365-367.
  • Awasthi, A. K., Li, J., Koh, L., Ogunseitan, O. A., 2019. Circular economy and electronic waste. Nature Electronics, 2, 86–89.
  • Avrupa Komisyonu, 2010. Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials. Erişim tarihi: 30.04. 2020. http://ec.europa.eu/DocsRoom/documents/5662/attachments/1/translations.
  • Avrupa Komisyonu, 2017. The role of waste-to-energy in the circular economy. Communication from the commission to the European Parliament, the council, the European economic and social committee and the committee of the regions. Erişim tarihi: 25.04.2021. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0034&from=EN.
  • Avrupa Komisyonu, 2020a. Study on the EU's list of Critical Raw Materials. Erişim tarihi: 25.04.2021. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.
  • Avrupa Komisyonu, 2020b. Circular Economy Action Plan The European Green Deal. Erişim tarihi: 25.06.2021. https://ec.europa.eu/environment/pdf/circular-economy/new_circular_economy_action_plan.pdf.
  • Avrupa Komisyonu, 2020c. Communication ‘Critical Raw Mate¬rials Resilience: Charting a Path towards greater Security and Sustainability’, COM (2020) 474 final, 2020. Erişim tarihi: 28.06.2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474
  • Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T.V., Yang, Y., Walton, A., Buchert, M., 2013. Recycling of rare earths: A critical review. J. Clean. Prod., 51, 1–22.
  • Bobba, S., Carrara, S., Huisman, J., Mathieux, F., Pavel, C., 2020. Critical Raw Materials for Strategic Technologies and Sectors in the EU-A Foresight Study. ISBN 978-92-76-15336-8. doi: 10.2873/58081
  • Bogart, J. A., Cole, B. E., Boreen, M. A., Lippincott, C. A., Manor, B. C., Carroll, P. J., Schelter, E. J., 2016. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures. Proc. Natl. Acad. Sci. U. S. A., 113, 14887–14892.
  • Buchert, M., Manhart, A., Bleher, D., Pingel, D., 2012. Recycling Critical Raw Materials from Waste Electronic Equipment. Freiburg: Öko-Institut., 49(0), 30-40.
  • Chan, K. H., Malik, M., Anawati, J., Azimi, G., 2020. Recycling of end-of-life lithium-ion battery of electric vehicles. Symposium on Rare Metal Technology, 2020 held at the 149th Annual Meeting and Exhibition, TMS 2020; San Diego; United States, 238549, 23-32. DOI: 10.1007/978-3-030-36758-9_3.
  • Charles, R. G., Douglas, P., Dowling, M., Liversage, G., Davies, M. L., 2020. Towards Increased Recovery of Critical Raw Materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling, 161, 104923.
  • Cheisson, T., Cole, B. E., Manor, B. C., Carroll, P. J., Schelter, E. J., 2019. Phosphoryl-ligand adducts of rare earth-TriNOx complexes: systematic studies and implications for separations chemistry. ACS Sustain. Chem. Eng., 7, 4993–5001.
  • Chen, W. S., Hsu, L. L., Wang, L. P., 2018. Recycling the GaN waste from LED industry by pressurized leaching method. Metals, 8, 861.
  • Chung, J., Seo, B., Lee, J., Kim, J. Y., 2021. Comparative analysis of I2-KI and HNO3 leaching in a life cycle perspective: Towards sustainable recycling of end-of-life c-Si PV panel. Journal of Hazardous Materials, 404,123989.
  • Deloitte Sustainability, 2017. Study on the review of the list of Critical Raw Materials — Criticality Assessment, Report prepared for the European Commission, doi:10.2873/876644.
  • EIT RawMaterials, 2020a. Erişim tarihi: 25.06.2021. https://eitrawmaterials.eu/?attachment_id=6207#iLightbox[postimages]/0
  • EIT RawMaterials, 2020b. EIT RawMaterials supports the world after COVID-19 in securing a sustainable supply of raw materials and advanced materials – for Europe’s green future and competitiveness. Erişim tarihi: 20.05.2020. https://eitrawmaterials.eu/wp-content/uploads/2020/04/EIT-RawMaterials-Position-Paper-on-COVID-19.pdf.
  • EIT RawMaterials, 2020c. EIT RawMaterials supports the European Green Deal with a focus on raw materials and advanced materials to secure Europe’s industrial leadership and sustainable future. Erişim tarihi: 20.05.2020. https://eitrawmaterials.eu/wp-content/uploads/2020/01/2020-01-28_EIT-RawMaterials-Postion-Paper-Green-Deal.pdf.
  • Gergoric, M., Barrier, A., Retegan, T., 2019. Recovery of Rare-Earth Elements from Neodymium Magnet Waste Using Glycolic, Maleic, and Ascorbic Acids Followed by Solvent Extraction. Journal of Sustainable Metallurgy, 5(1), 85-96.
  • Ghassa, S., Farzanegan, A., Gharabaghi, M., Abdollahi, H., 2020. Novel bioleaching of waste lithium ion batteries by mixed moderate thermophilic microorganisms, using iron scrap as energy source and reducing agent. Hydrometallurgy, 197, 105465.
  • Ilyas, S., Srivastava, R. R., Kim, H., Cheema, H. A., 2020. Hydrometallurgical recycling of palladium and platinum from exhausted diesel oxidation catalysts. Separation and Purification Technology, 248, 117029.
  • Itakura, T., Sasai, R., Itoh, H., 2006. Resource recovery from NdeFeeB sintered magnet by hydrothermal treatment. J. Alloys Compd., 408, 1382-1385.
  • Jha, M. K., Kumari, A., Panda, R., Kumar, Rajesh, J., Yoo, K., Lee, J. Y., 2016. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 2–26.
  • Kitagawa, J., Uemura, R., 2017. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process. Scientific Reports, 7(1), 8039.
  • Koyama, K., Kitajima, A., Tanaka, M., 2009. Selective leaching of rare-earth elements from an Nd-Fe-B magnet. Kidorui, 54, 36-37.
  • Krystofik, M., Bustamante, M., Badami, K., 2018. Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135, 24–33.
  • Kubota, F., Baba, Y., Goto, M., 2012. Application of Ionic Liquids for the Separation of Rare Earth Metals. Solv. Extr. Res. Dev. Jpn., 19, 17-28.
  • Kumari, A., Sinha, M. K., Pramanik, S., Sahu, S. K., 2018. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects. Waste Management, 75, 486-498.
  • Leader, A., Gaustad, G., Babbitt, C., 2019. The Effect of Critical Material Prices on the Competitiveness of Clean Energy Tech¬nologies. Materials for Renewable and Sustainable Energy, 8(2), 1–17. https://doi.org/10.1007/s40243-019-0146-z.
  • Liu, X., Liu, H., Wu, W., Zhang, X., Gu, T., Zhu, M., Tan, W., 2020. Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Frontiers in Microbiology, 10, 3058. Doi:10.3389/ fmicb.2019.03058.
  • Løvik, A. N., Hagelüken, C., Wäger, P., 2018. Improving supply security of critical metals: Current developments and research in the EU. Sustainable Materials and Technologies, 15, 9-18.
  • Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., Sun, Z., 2018. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng., 6, 1504–1521.
  • Massari, S., Ruberti, M., 2013. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38, 36–43.
  • Muddana, M. H., Baral, S.S., 2019. A comparative study of the extraction of metals from the spent fluid catalytic cracking catalyst using chemical leaching and bioleaching by Aspergillus Niger. Journal of Environmental Chemical Engineering. 7(5) DOI: 10.1016/j.jece.2019.103335.
  • Munir, H., Srivastava, R. R., Kim, H., Ilyas, S., Khosa, M. K., Yameen, B., 2020. Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. J. Chem. Tech. Biotech., 95, 2286–2294.
  • Nguyen, V.N.H., Lee, M.S, 2021. Separation of Co(II), Ni(II), Mn(II) and Li(I) from synthetic sulfuric acid leaching solution of spent lithium ion batteries by solvent extraction. Journal of Chemical Technology and Biotechnology, 96(5), 1205-1217.
  • Othman, E.A., van der Ham, A.G.J., Miedema, H., Kersten, S.R.A., 2020. Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Separation and Purification Technology, 252,117435.
  • Padhan, E., Nayak, A.K., Sarangi, K., 2017. Recovery of neodymium and dysprosium from NdFeB magnet swarf. Hydrometallurgy, 174, 210–215.
  • Padhan, E., Sarangi, K., 2017. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272. Hydrometallurgy, 167, 134-140.
  • Panda, S., Akcil, A., 2021. Securing supplies of technology critical metals: Resource recycling and waste management. Waste Manag., 123, 48-51.
  • Pavón, S., Fortuny, A., Coll, M.T., Sastre, A.M., 2018. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction. Journal of Environmental Management, 222, 359-367.
  • Provazi, K., Campos, B.A., Espinosa, D.C.R., Tenório, J.A.S., 2011. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manage., 31, 59-64.
  • Rademaker, J. H., Kleijn, R., Yang, Y., 2013. Recycling as a Strategy against Rare Earth Element Criticality: A Systemic Evaluation of the Potential Yield of NdFeB Magnet Recycling. Environ. Sci. Technol., 47, 10129–10136.
  • Resmi Gazete, 2021. Yeşil Mutabakat Eylem Planı. Erişim tarihi: 23.07.2021. https://www.resmigazete.gov.tr/eskiler/2021/07/20210716-8.pdf.
  • Savvilotidou, V., Gidarakos, E., 2020. Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. Journal of Cleaner Production, 250,119440.
  • Schulze, R., Buchert, M., 2016. Estimates of global REE recycling potentials from NdFeB magnet material. Resources, Conservation and Recycling 113, 12–27.
  • Scott, K., Barrett, J., 2015. An integration of net imported emissions into climate change targets. Environ. Sci. Policy, 52, 150–215.
  • Sethurajan, M., Gaydardzhiev, S., 2021. Bioprocessing of spent lithium ion batteries for critical metals recovery – A review. Resources, Conservation and Recycling, 165, 105225.
  • Statista, Statista Dossier Commercial UAVs, 2019. Erişim tarihi: 05.08.2021. https://www.statista.com/statistics/431717/global-uav-market-size-by-application/.
  • Sun, D. T., Gasilova, N., Yang, S., Oveisi, E., Queen, W. L., 2018. Rapid, selective extraction of trace amounts of gold from complex water mixtures with a metal-organic framework (MOF)/polymer composite. J. Am. Chem. Soc., 140, 16697–16703.
  • Tan, Q., Deng, C., Li, J., 2016. Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci. Rep., 6, 1–10.
  • US-DOE, 2019. Testimony of Assistant Secretary Daniel Simmons for Energy Efficiency and Renewable Energy, U.S. Department of Energy Before the U.S. Senate Committee on Energy & Natural Resources, Erişim tarihi: 25.06.2021. https://www.energy.gov/sites/prod/files/2019/11/f68/11-6-19-Daniel-Simmons-FT-SENR.pdf.
  • Turcheniuk, K., Bondarev, D., Singhal, V., Yushin, G., 2018. Ten years left to redesign lithium-ion batteries. Nature, 559 (7715), 467-470.
  • UNECE, 2020. Securing critical raw materials supply is key to the response to ‎COVID-19‎. Erişim tarihi: 27.05.2020. https://www.unece.org/info/media/presscurrent-press-h/sustainable-energy/2020/securing-critical-raw-materials-supply-is-key-to-the-response-to-covid-19/doc.html.
  • Vander Hoogerstraete, T., Wellens, S., Verachtert, K., Binnemans, K., 2013. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem., 15, 919–927.
  • Venkatesan, P., Vander Hoogerstraete, T., Binnemans, K., Sun, Z., Sietsma, J., Yang, Y., 2018. Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Roomerature Electrolysis Pretreatment Step. ACS Sustain. Chem. Eng., 6, 9375–9382.
  • Wellens, S., Thijs, B., Binnemans, K., 2012. An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem., 14 (2012), 1657-1665.
  • Yang, Y., Walton, A., Sheridan, R., Güth, K., Gauß, R., Gutfleisch, O., Buchert, M., Steenari, B.-M., Van Gerven, T., Jones, P. T., Binnemans, K., 2017. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy, 3(1), 122-149. Yeşil Mutabakat Eylem Planı 2021. Erişim tarihi: 03.08.2021. https://ticaret.gov.tr/data/60f1200013b876eb28421b23/MUTABAKAT%20YE%C5%9E%C4%B0L.pdf.
  • Yurramendi, L., Gijsemans, L., Forte, F., Aldana, J. L., del Río, C., Binnemans, K., 2019. Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy, 187, 38–44.
  • Zhao, J., Qu, X., Qu, J., Zhang, B., Ning, Z., Xie, H., Zhou, X., Song, Q., Xing, P., Yin, H., 2019. Extraction of Co and Li2CO3 from cathode materials of spent lithium-ion batteries through a combined acid-leaching and electro-deoxidation approach. J. Hazard. Mater. 379, 120817.

Details

Primary Language Turkish
Subjects Engineering, Multidisciplinary
Journal Section Collection
Authors

Ata AKÇIL> (Primary Author)
SÜLEYMAN DEMİREL ÜNİVERSİTESİ
0000-0002-9991-0543
Türkiye


Ceren ERÜST ÜNAL>
SÜLEYMAN DEMİREL ÜNİVERSİTESİ
0000-0002-9459-3374
Türkiye


Mediha Demet OKUDAN>
SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE SAĞLIK BİLİMLERİ FAKÜLTESİ, İŞ SAĞLIĞI VE GÜVENLİĞİ BÖLÜMÜ
0000-0002-6014-903X
Türkiye

Publication Date September 30, 2022
Application Date August 12, 2021
Acceptance Date February 22, 2022
Published in Issue Year 2022, Volume 61, Issue 3

Cite

Bibtex @review { madencilik982123, journal = {Scientific Mining Journal}, issn = {2564-7024}, eissn = {2587-2613}, address = {Selanik Cad. No: 19/4 06650 Kızılay-Çankaya / ANKARA - TURKEY}, publisher = {Chamber of Mining Engineers of Turkey}, year = {2022}, volume = {61}, number = {3}, pages = {168 - 178}, doi = {10.30797/madencilik.982123}, title = {Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması}, key = {cite}, author = {Akçıl, Ata and Erüst Ünal, Ceren and Okudan, Mediha Demet} }
APA Akçıl, A. , Erüst Ünal, C. & Okudan, M. D. (2022). Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması . Scientific Mining Journal , 61 (3) , 168-178 . DOI: 10.30797/madencilik.982123
MLA Akçıl, A. , Erüst Ünal, C. , Okudan, M. D. "Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması" . Scientific Mining Journal 61 (2022 ): 168-178 <http://www.mining.org.tr/en/pub/issue/72907/982123>
Chicago Akçıl, A. , Erüst Ünal, C. , Okudan, M. D. "Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması". Scientific Mining Journal 61 (2022 ): 168-178
RIS TY - JOUR T1 - Gaining Critical Raw Materials to Circular Economy by Recycling AU - AtaAkçıl, CerenErüst Ünal, Mediha DemetOkudan Y1 - 2022 PY - 2022 N1 - doi: 10.30797/madencilik.982123 DO - 10.30797/madencilik.982123 T2 - Scientific Mining Journal JF - Journal JO - JOR SP - 168 EP - 178 VL - 61 IS - 3 SN - 2564-7024-2587-2613 M3 - doi: 10.30797/madencilik.982123 UR - https://doi.org/10.30797/madencilik.982123 Y2 - 2022 ER -
EndNote %0 Scientific Mining Journal Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması %A Ata Akçıl , Ceren Erüst Ünal , Mediha Demet Okudan %T Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması %D 2022 %J Scientific Mining Journal %P 2564-7024-2587-2613 %V 61 %N 3 %R doi: 10.30797/madencilik.982123 %U 10.30797/madencilik.982123
ISNAD Akçıl, Ata , Erüst Ünal, Ceren , Okudan, Mediha Demet . "Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması". Scientific Mining Journal 61 / 3 (September 2022): 168-178 . https://doi.org/10.30797/madencilik.982123
AMA Akçıl A. , Erüst Ünal C. , Okudan M. D. Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması. Mining. 2022; 61(3): 168-178.
Vancouver Akçıl A. , Erüst Ünal C. , Okudan M. D. Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması. Scientific Mining Journal. 2022; 61(3): 168-178.
IEEE A. Akçıl , C. Erüst Ünal and M. D. Okudan , "Kritik Hammaddelerin Geri Dönüşüm ile Döngüsel Ekonomiye Kazandırılması", Scientific Mining Journal, vol. 61, no. 3, pp. 168-178, Sep. 2022, doi:10.30797/madencilik.982123

22562 22561 22560 22590 22558